O.P.Code: 20EE0243

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech IV Year I Semester Regular Examinations February-2024 APPLICATION OF ELECTRICAL POWER

		(Open Elective – IV)			
Ti	me	e: 3 Hours	Max.	Mar	ks: 60
(Answer all Five Units $5 \times 12 = 60$ Marks)					
		UNIT-I			
1		Explain about polar curves.	CO ₁	L2	6M
	b	A 350 CP lamp is hung 5m above the center of a circular area of 8m	CO ₁	L3	6M
		diameter. Calculate the illumination at the			
		(i) Centre of area. (ii) Periphery of the area. (iii) Average illumination OR			
2		Explain with sketch the principle and operation of fluorescent lamp.	CO ₁	L3	6M
	b	A room measuring 20m×10m is to be illuminated by 5 lamps and the	CO1	L3	6M
		average illumination is to be 100 lux. Determine the MSCP of each			
		lamp if the utilization and depreciation factors are 0.4 and 0.8			
		respectively			
		UNIT-II			
3	a	Classify the different types of heating? Write advantages of electric	CO ₂	L2	6M
		heating.			
	b	A slab of insulating material 250 sq cm in area and 1 cm thick is to be	CO ₂	L3	6M
		heated by dielectric heating. The power required is 300 W at 30 × 106			
		cps. Materials has permittivity of 5 and power factor of 0.05. Determine			
		voltage necessary.			
4	a	Discuss briefly about induction heating process.	CO ₂	L2	6M
	b	Determine the amount of energy required to melt brass at the rate of one	CO ₂	L3	6M
		ton per hour in a single phase Ajax Wyatt furnace. Specific heat of brass			
		is 0.084 Kcal/ Kg/°C. Latent heat of fusion is 50 Kcal/Kg, initial			
		temperature is 24°C, melting point of brass is 920°C. Assume efficiency			
		to be 65 %.			
		UNIT-III			
5		Explain in detail about the following with respect to Welding:	CO ₃	L2	12M
		i) Spot welding ii) Seam welding iii) Butt welding iv) projection welding			
		OR			
6	a	Explain briefly about flash welding.	CO ₃	L2	6M
	b	What are the qualities of a good weld?	CO ₃	L2	6M
		UNIT-IV			
7	a	Discuss about the process of electro plating.	CO ₄	L2	6M
	b	Explain the widely used areas of electrolysis.	CO ₄	L2	6M
		OR			
8	a	Explain Electrodeposition of rubber in detail.	CO4	L2	6M
	b	Identify and write the various operations involved in electroplating.	CO4	L2	6M

UNIT-V

9	a	What are the mechanical features of traction motors?	CO ₅	L3	6M
	b	A train has schedule speed of 50 km/hr over a level track distance	CO ₅	L3	6M
		between stations being 2 km. Duration of stop is 40 sec. Assuming			
		braking retardation of 3 km/hr/sec and maximum speed 25% greater			
		than average speed, calculate acceleration required to run the service.			
		OR			
10	a	Compare A.C traction with D.C traction.	CO ₅	L2	6M
	b	Discuss the speed-time curves for urban service.	CO ₅	L2	6M
		*** FND ***			

